The Mathematics Department
 Presents
 The Problem of the Month September 2022

The Problem:
Consider a regular five-pointed star inscribed in a circle of radius 1.
Find the area inside the circle but outside the star.

The Solution:
Consider the following diagram:

Here O is the center of the circle. We have drawn lines from O to two vertices of the star, A and B. Points C and E are where BG and BH intersect AF , respectively, and D is where OB intersects AF . Note that triangle CEB is a golden triangle, an isosceles triangle with apex angle 36 and base angles 72 degrees. Let us call the lengths of line segments $|\mathrm{CB}|$ and $|\mathrm{CE}| a$ and b, respectively. Then, because triangle CEB is golden, we have:

$$
\frac{a}{b}=\Phi=\frac{1+\sqrt{5}}{2}
$$

This allows us to relate the base and the height of triangle CEB as follows:

$$
h=\sqrt{(b \Phi)^{2}-\left(\frac{b}{2}\right)^{2}}=b \sqrt{\Phi^{2}-\frac{1}{4}}=\frac{b}{2} \sqrt{5+2 \sqrt{5}}
$$

Now, observe that triangle AOD is a right triangle (right angle at D) with $|\mathrm{OA}|=1$ and angle AOD being 72 degrees. Thus $|\mathrm{OD}|=\cos (72) \approx$ 0.309. This, in turn makes $|\mathrm{DB}|=1-0.309=0.691=h$. Using the relationship between b and h that we derived above, we get:

$$
b=\frac{1.382}{\sqrt{5+2 \sqrt{5}}}
$$

Now that we have values for b and h, we find the area of each of the golden triangles that make up the points of the star to be:

$$
\frac{0.691}{\sqrt{5+2 \sqrt{5}}} \times 0.691 \approx 0.1551
$$

Multiplying by 5 gives the total area of the 5 golden triangles to be 0.7757 .

This leaves the central pentagon. It consists of 5 isosceles triangles with apex angle $=54$ degrees and a base equal to $\quad b=\frac{1.382}{\sqrt{5+2 \sqrt{5}}}$. The altitude of each of these 5 triangles will be $H=\frac{b}{2} \tan$ (54).

This gives the area of the pentagon to be $5\left(\frac{b}{2}\right)^{2} \tan (54) \approx 0.3469$.
Putting this all together, we see that the area enclosed by the unit circle but outside the inscribed star to be:

$$
\pi-(0.7757+0.3469)=\pi-(1.1226)=2.019
$$

