Solution to the Problem of the Month
 March 2022

Consider an equilateral $\triangle A B C$ with each side being of length n. Let M be a point inside the triangle such that $|A M|=3,|B M|=4$ and $|C M|=5$. See the sketch below. Find the value of n in the form $\sqrt{a+b \sqrt{c}}$, where a, b and c are integers.

A solution:
We begin by rotating $\triangle A B C$ in a counterclockwise direction $\pi / 3$ radians about A. See the sketch below. Let M get mapped to M^{\prime} and C to C^{\prime}, then $\triangle M M^{\prime} A$ will form an equilateral triangle with sides of length 3 . We now observe that $\triangle M M^{\prime} C$ is a $3-4-5$ triangle and it readily follows that $\measuredangle M M^{\prime} C=\pi / 2$ radians.

We can also see that $\measuredangle A M^{\prime} C=\pi / 2+\pi / 3=5 \pi / 6$. In $\triangle A M^{\prime} C$, where $A C=n$, we apply the cosine rule to get

$$
n=\sqrt{3^{2}+4^{2}-2 \cdot 3 \cdot 4 \cdot \cos (5 \pi / 6)}=\sqrt{25+12 \sqrt{3}} .
$$

