Two solutions to the Problem of the Month for February 2023

Given a right triangle with legs a and b and hypotenuse c, prove that:

$$
a+b \leq \sqrt{2} c
$$

Under what conditions, do we have equality?

Solution:

$$
\begin{aligned}
& a+b \leq \sqrt{2} c \Leftrightarrow \frac{(a+b)}{\sqrt{2}} \leq \sqrt{a^{2}+b^{2}} \\
& \quad \Leftrightarrow \frac{\left(a^{2}+b^{2}+2 a b\right)}{2} \leq a^{2}+b^{2}
\end{aligned}
$$

$\Leftrightarrow a b \leq \frac{1}{2}\left(a^{2}+b^{2}\right) \quad$ This is true by the arithmetic mean, geometric mean inequality which says that $\sqrt{s t} \leq \frac{(s+t)}{2}$ and equality holds precisely when $s=t$.

Observe that our last inequality relates the arithmetic and geometric means of $a^{2} \& b^{2}$.

Thus we have equality precisely when the right triangle is isosceles.

Here is a second proof.

$[>$ restart $:$ with (plots) $:$ with (plottools $):$
[> $a:=\operatorname{line}([0,0],[3,0]): b:=\operatorname{line}([0,0],[0,4]): c:=\operatorname{line}([3,0],[0,4]):$
$[>d d:=\operatorname{textplot}([-.5,2, " \mathrm{a} "]): e:=\operatorname{textplot}([1.5,-.5, \mathrm{~b} \mathrm{~b}]): f:=\operatorname{textplot}([2,2, " \mathrm{c} "]):$
[> $g:=\operatorname{textplot}([2, .5$, "theta" $]):$
$>\operatorname{display}([a, b, c, d d, e, f, g]$, axes $=$ none $)$;

b
From the diagram above, we have $b=c \cdot \cos ($ theta) \& $a=c \cdot \sin ($ theta $)$

Thus
$a+b=c(\cos ($ theta $)+\sin ($ theta $))=c \sqrt{2} \sin \left(\right.$ theta $\left.+\frac{\pi}{4}\right)$

$$
\leq c \sqrt{2}
$$

We have equality when theta $=\frac{\pi}{4}$ making the right triangle isosceles.

Here we recall the identity:
$\cos ($ theta $)+\sin ($ theta $)=\sin \left(\right.$ theta $\left.+\frac{\pi}{4}\right)$
This identity is proved as follows:
$\sin (t)+\cos (t)=\sqrt{2}\left(\frac{1}{\sqrt{2}} \sin (t)+\frac{1}{\sqrt{2}} \cos (t)\right)$
$=\sqrt{2} \cdot\left(\cos \left(\frac{\pi}{4}\right) \sin (t)+\sin \left(\frac{\pi}{4}\right) \cos (t)\right)=\sqrt{2} \sin \left(\frac{\pi}{4}+t\right)$
This last identify comes from $\sin (a+b)=\cos (a) \sin (b)+\cos (b) \sin (a)$

