Problem of the Month for October 2021 Solution

Let us begin with a rectangular prism and replace its roof with a plane tilted at an angle (see picture below --- think of the Diamond Building in Chicago). That is, we take the plane that contains a line segment joining two opposite vertical edges of the prism along with one of the vertices atop a different vertical edge. We take the base to be 1 unit by 1 unit. Let us take the height of the prism to be H units, but we shall see that this height is irrelevant. (Below, we set $\mathrm{H}=10$.) We want to find a formula for the area of the slanted roof as a function of the angle of slant.
$\left[>\right.$ restart $:$ with (plots) $:$ with (plottools) $:$ ang $:=\frac{\mathrm{Pi}}{3}: h h:=\operatorname{sqrt}(2) \cdot \tan ($ ang $)$:
$\left[>a:=\right.$ line $\left(\left[\frac{1}{2},-\frac{1}{2}, 0\right],\left[\frac{1}{2}, \frac{1}{2}, 0\right]\right): b:=$ line $\left(\left[\frac{1}{2}, \frac{1}{2}, 0\right],\left[-\frac{1}{2}, \frac{1}{2}, 0\right]\right): c:=$ line $([$ $\left.\left.-\frac{1}{2}, \frac{1}{2}, 0\right],\left[-\frac{1}{2},-\frac{1}{2}, 0\right]\right): d d:=\operatorname{line}\left(\left[-\frac{1}{2},-\frac{1}{2}, 0\right],\left[\frac{1}{2},-\frac{1}{2}, 0\right]\right):$
$\left[>e:=\operatorname{line}\left(\left[\frac{1}{2},-\frac{1}{2}, 0\right],\left[\frac{1}{2},-\frac{1}{2}, 10\right]\right): f:=\operatorname{line}\left(\left[\frac{1}{2}, \frac{1}{2}, 0\right],\left[\frac{1}{2}, \frac{1}{2}, 10\right]\right): g:=\operatorname{line}([\right.$ $\left.\left.-\frac{1}{2}, \frac{1}{2}, 0\right],\left[-\frac{1}{2}, \frac{1}{2}, 10\right]\right): h:=\operatorname{line}\left(\left[-\frac{1}{2},-\frac{1}{2}, 0\right],\left[-\frac{1}{2},-\frac{1}{2}, 10\right]\right):$
$\left[>i:=\operatorname{line}\left(\left[\frac{1}{2},-\frac{1}{2}, 10\right],\left[\frac{1}{2}, \frac{1}{2}, 10\right]\right): j:=\operatorname{line}\left(\left[\frac{1}{2}, \frac{1}{2}, 10\right],\left[-\frac{1}{2}, \frac{1}{2}, 10\right]\right): k:=\operatorname{line}([\right.$ $\left.\left.-\frac{1}{2}, \frac{1}{2}, 10\right],\left[-\frac{1}{2},-\frac{1}{2}, 10\right]\right): l:=\operatorname{line}\left(\left[-\frac{1}{2},-\frac{1}{2}, 10\right],\left[\frac{1}{2},-\frac{1}{2}, 10\right]\right):$
$\left[>m:=\right.$ implicitplot3d $\left(\frac{h h}{2} \cdot\left(x+\frac{1}{2}\right)+\frac{h h}{2} \cdot\left(y+\frac{1}{2}\right)+(z-10)=0, x=-\frac{1}{2} \cdot \cdot \frac{1}{2}, y=-\frac{1}{2}\right.$.. $\left.\frac{1}{2}, z=0 . .10\right):$
$\left[>n:=\right.$ pointplot $3 d\left(\left[\left[-\frac{1}{2},-\frac{1}{2}, 10\right],\left[\frac{1}{2}, \frac{1}{2}, 10-h h\right],\left[\frac{1}{2},-\frac{1}{2}, 10\right],\left[-\frac{1}{2}, \frac{1}{2}, 10\right]\right]\right.$, symbol $=$ solidcircle, symbolsize $=15$, color $=$ black $)$:
$\left[>n n:=\right.$ pointplot $3 d\left(\left[\left[\frac{1}{2},-\frac{1}{2}, 10-\frac{h h}{2}\right],\left[-\frac{1}{2}, \frac{1}{2}, 10-\frac{h h}{2}\right],\left[\frac{1}{2}, \frac{1}{2}, 10-h h\right]\right]\right.$, symbol

$$
\begin{aligned}
& =\text { solidcircle, symbolsize }=15, \text { color }=\text { black }): \\
& {\left[>o:=\operatorname{textplot3d}\left(\left[-\frac{1}{2},-\frac{1}{2}, 10.4, \text { "A" }\right]\right): p:=\operatorname{textplot} 3 d\left(\left[\frac{1}{2}, \frac{1}{2}, 10-1.5 \cdot h h, \text { "E" }\right]\right):\right.} \\
& q:=\text { textplot } 3 d\left(\left[0.6,-\frac{1}{2}, 10,{ }^{\prime} \mathrm{C}^{\prime \prime}\right]\right): \\
& \overline{ }>r:=\operatorname{textplot} 3 d\left(\left[-\frac{1}{2}, 0.6,10, \text { "B" }\right]\right): s:=\operatorname{textplot} 3 d\left(\left[\frac{1}{2}, \frac{1}{2}, 10.4, \text { "D" }\right]\right): t:= \\
& \text { textplot } 3 d\left(\left[\frac{1}{2},-0.6,10-\frac{h h}{2}, " \mathrm{~F} "\right]\right): u:=\text { textplot } 3 d\left(\left[-\frac{1}{2}, 0.6,10-\frac{h h}{2}, ~ " \mathrm{G}^{\prime}\right]\right): \\
& {\left[> v : = \text { line } ([- \frac { 1 } { 2 } , - \frac { 1 } { 2 } , 1 0] , [\frac { 1 } { 2 } , \frac { - 1 } { 2 } , 1 0 - \frac { h h } { 2 }] \text { , thickness } = 5 , \text { color } = \text { blue }) : w : = \text { line } \left(\left[\frac{1}{2}\right.\right.\right. \text {, }} \\
& \left.\left.-\frac{1}{2}, 10-\frac{h h}{2}\right],\left[\frac{1}{2}, \frac{1}{2}, 10-h h\right], \text { thickness }=5, \text { color }=\text { blue }\right): \\
& \overline{=}>v v:=\text { line }\left(\left[\frac{-1}{2}, \frac{1}{2}, 10-\frac{h h}{2}\right],\left[\frac{1}{2}, \frac{1}{2}, 10-h h\right] \text {, thickness }=5, \text { color }=\text { blue }\right): w w:= \\
& \text { line }\left(\left[\frac{-1}{2}, \frac{1}{2}, 10-\frac{h h}{2}\right],\left[\frac{-1}{2}, \frac{-1}{2}, 10\right] \text {, thickness }=5, \text { color }=\text { blue }\right) \text { : } \\
& \begin{array}{l}
\text { [> } \\
> \\
>
\end{array} \\
& >\operatorname{display}([a, b, c, d d, e, f, g, h, i, j, k, l, m, n, n n, o, p, q, r, s, t, u, v, v v, w, w w] \text {, axes }=n o n e) \text {; }
\end{aligned}
$$

Here we have taken the following coordinates for the following points:

$$
\begin{gathered}
A=\left(-\frac{1}{2},-\frac{1}{2}, 10\right) \quad B=\left(-\frac{1}{2}, \frac{1}{2}, 10\right) \quad C=\left(\frac{1}{2},-\frac{1}{2},\right. \\
10) \quad \mathrm{D}=\left(\frac{1}{2}, \frac{1}{2}, 10\right) \quad E=\left(\frac{1}{2}, \frac{1}{2}, 10-h h\right) .
\end{gathered}
$$

We seek the area of the slanted roof as a function of the angle of declination, ang. Consider the diagram, below. Here we have drawn triangle ADE. Note that $|A D|=\sqrt{2} . \quad$ Let $|D E|=h h$ and angle $D A E$ be ang. Then we have:

$$
h h=\sqrt{2} \cdot \tan (\text { ang })
$$

Now let us find the equation for the plane which represents the slanted roof. Clearly vector $\overrightarrow{A E}=\langle 1,1,-h h\rangle$. We seek a vector orthogonal to this vector, as it will serve as the normal vector to our plane. An obvious choice is $N=\left\langle\frac{h h}{2}, \frac{h h}{2}, 1\right\rangle$. (Note that the angle N makes with the z-axis equals ang.) If we take point A as the
chosen point in the plane, we get equation:
$P L: \quad \frac{h h}{2}\left(x+\frac{1}{2}\right)+\frac{h h}{2}\left(y+\frac{1}{2}\right)+(z-10)=0$
Setting $x=\frac{1}{2} \& y=-\frac{1}{2}$, in the equation of our plane we get
$z=10-\frac{h h}{2}$. So $F=\left(\frac{1}{2},-\frac{1}{2}, 10-\frac{h h}{2}\right)$.
Likewise we set $x=-\frac{1}{2} \& y=\frac{1}{2}$ to get $G=\left(-\frac{1}{2}, \frac{1}{2}, 10-\frac{h h}{2}\right)$.

Now, let us compute the following vectors:

$$
\begin{aligned}
& \overrightarrow{A F}=\left\langle 1,0,-\frac{h h}{2}\right\rangle \quad \overrightarrow{A G}=\left\langle 0,1,-\frac{h h}{2}\right\rangle \quad \overrightarrow{F E}=\left\langle 0,1,-\frac{h h}{2}\right\rangle \\
& \overrightarrow{G E}=\left\langle 1,0,-\frac{h h}{2}\right\rangle
\end{aligned}
$$

These vectors all have the same length: $\sqrt{1+\frac{h h^{2}}{4}}$
Using the formula $\frac{u \cdot v}{\|u\|\|v\|}=\cos (\theta)$ we see that angles GAF and GEF are congruent as are angles AFE and AGE. Thus, we have a rhombus.

The formula for the area of a rhombus is $1 / 2$ the product of the diagonals. Let apply this:

$$
\begin{aligned}
|A E| & =\sqrt{\left(-\frac{1}{2}-\frac{1}{2}\right)^{2}+\left(-\frac{1}{2}-\frac{1}{2}\right)^{2}+(10-(10-h h))^{2}} \\
& =\sqrt{1+1+h h^{2}}=\sqrt{2+h h^{2}}
\end{aligned}
$$

$$
|F G|=\sqrt{\left(\frac{1}{2}+\frac{1}{2}\right)^{2}+\left(-\frac{1}{2}-\frac{1}{2}\right)^{2}+0}=\sqrt{2}
$$

Thus the area is

$$
\begin{aligned}
\frac{1}{2} & \sqrt{2} \cdot \sqrt{2+h h^{2}}=\frac{\sqrt{4+h h^{2}}}{2}=\frac{\sqrt{4+4 \cdot \tan ^{2}(\text { ang })}}{2} \\
& =\sqrt{1+\tan ^{2}(\text { ang })}=\frac{1}{\cos (\text { ang })}=\sec (\text { ang })
\end{aligned}
$$

Note that the height of the prism does not figure in the answer.

