The Problem of the Month April 2022

Let $f(x, y)=\sqrt{(x-1)^{2}+(y+1)^{2}}+\sqrt{(x+1)^{2}+(y-1)^{2}}+\sqrt{(x-2)^{2}+(y-2)^{2}}$.
Find the minimum value of $f(x, y)$ over the real numbers. Give your answer in the form $a \sqrt{b}+\sqrt{c}$, where a, b and c are positive integers.

A Solution.

We need to minimize the sum of the distances from the point (x, y) to the points $(1,-1),(-1,1)$ and $(2,2)$. This is equivalent to finding the Fermat point of the triangle with vertices at $(1,-1),(-1,1)$ and $(2,2)$. By symmetry, we see that this point must lie on the line $y=x$, where $0<x<2$. In light of this observation, we will minimize the function $m(x)=f(x, x)$, on the interval, $0<x<2$.

$$
\begin{aligned}
m(x) & =\sqrt{(x-1)^{2}+(x+1)^{2}}+\sqrt{(x+1)^{2}+(x-1)^{2}}+\sqrt{(x-2)^{2}+(x-2)^{2}} \\
& =2 \sqrt{2} \sqrt{x^{2}+1}+\sqrt{2}(2-x) .
\end{aligned}
$$

The first derivative, $m^{\prime}(x)=\frac{2 \sqrt{2} x}{\sqrt{x^{2}+1}}-\sqrt{2}$, and when $m^{\prime}(x)=0$, we see that the minimum value occurs at $x=\frac{1}{\sqrt{3}}$. It follows that $f(x, y)$ is minimized at the Fermat point $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$. The minimum value of $f(x, y)$ is

$$
f\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)=m\left(\frac{1}{\sqrt{3}}\right)=2 \sqrt{2}+\sqrt{6}
$$

