Proofs: A Short Primer

By D.N. Seppala-Holtzman

Perhaps the characteristic that distinguishes mathematics most from other academic disciplines is the presence of universal truths.  These truths are called theorems.  Unlike an empirical science that asymptotically approaches certainty by amassing more and more corroborating evidence, mathematics declares true precisely that which has been proven.  Proof is, simultaneously, the central pillar that supports the subject and the single biggest impediment for students of mathematics to conquer.  The problem, of course, is that, unlike the various skills taught in the mathematics curriculum, proving theorems is part skill and part art.  Drill and practice do not yield competence in art.  Experience helps a great deal; so do rules of thumb.  There are a number of good books which provide both guidelines for and examples of proofs, amongst them “The Nuts and Bolts of Proofs” by A. Cupillari (Wadsworth), “How to Read and Do Proofs” by D. Solow (Wiley) and “Discrete Mathematics with Applications” by S. Epp (Brooks/Cole.)

Theorems and the means of proving them often fall into one of several categories.  What follows, below, is a brief list of various types of theorems and the types of arguments likely to succeed to proving them.  These are only meant as guidelines, not hard and fast rules.  By way of convention, we shall put all commentary within proofs in parentheses and italics. 

1) Theorems of the form: for all members of a certain set, S, something is true.  
Essentially, theorems of this type are implications.  They say if H (some set of hypotheses) is true then C (a conclusion) is true. Theorems of this sort generally fall into one of two subcategories, one where the given set is small and the other where the set is either large or infinite.  In the first case, it is often a simple matter to check the elements of the given set, one by one, for the desired property.   For example:

Theorem A: All prime numbers larger than 2 and smaller than 10 are odd.

Proof of A:  The set in question is S = {3, 5, 7}.  All three of its members are odd. ■

But what if the set, S, were large or infinite?  Consider:

Theorem B: All prime numbers larger than 2 are odd.

Proof of B: Let p be a prime number larger than 2.  (This is a choice of a generic, particular element. Note that p is specific in the sense that a particular, general prime has been selected.  It is not specific in the sense of letting p be 17, for example.  An example can never prove a global theorem.) We must show that p is odd.  (We select a general member from the set, S, and show that it must have the desired property solely by virtue of the fact that it is a member of S.) Now p is not 2, by hypothesis.  If we divide p by 2, we must get a remainder of 1.  If we got a remainder of 0, then p would have been divisible by 2 and, hence, not a prime.  Moreover, we can never get a remainder equal to or larger than the number by which we are dividing.  Thus, p = 2k + 1, for some integer, k.   This is the definition of an odd integer. ■

2) Existence / Non-existence and Uniqueness Theorems. 

There are several types of theorems of this type.  The first and easiest type is the theorem that asserts the existence of an object where its proof consists simply of producing the object.

Theorem C:  There exists an integer, s, such that x + s = s + x = x for all integers x.

Proof of C:  s = 0 has this property. ■

But what if we want to show both that an object exists and that it is unique?  Consider:

Theorem D:  There is a unique integer, s, such that x + s = s + x = x for all integers x.

Proof of D:  (We must prove two separate things: that s exists and that it is unique.)  To prove that s exists, we observe that s = 0 has this property.  To prove that it is unique, we suppose that some element, t, has this property.  We wish to show that t = s.  

Let t have the desired property.  Then 0 + t = 0 (by the property of t) and 0 + t = t (by the property of 0).  Thus s = 0 = t and so 0 is the only element with the desired property. ■

The next type existence theorem is best proved by providing a method or algorithm to find the desired object.  The actual object need not be identified.

Theorem E:  Let S be a finite set of numbers with the following properties: (1) there is a binary operation, *, defined on the set such that if s and t are in S, then s*t is also a member of S; (2) x*y = x*z if and only if y = z; (3) 1 is in S.  Then, for any x in S, there exists a y such that x * y = 1.

Proof of E:  Let x be a member of S. (As above, we select a generic, particular element.) We wish to show that there exists a y in S such that x*y=1.  (For both the writer and the reader it is a good idea to reinforce with explicit clarity that which one wishes to prove.) Consider x * a, x * b, x * c, …. where the second term runs over all elements of S.  These terms are all distinct by property 2.  Thus, “starring on the left by x” is a function from S to S which is injective (This is the same as being one-to-one.  Indeed, property 2 is the definition of being injective.) An injective function from a finite set to itself is also surjective. (This is the same as “onto.”)  One sees this as follows.  S is given to be finite.  Suppose that S has n elements.  Now x * a, x * b, x * c, …. produces n distinct elements of S.  Thus each element of S appears somewhere in this list.  Since 1 is in S by property 3, it shows up as one of the members of this list.  Thus, there is a y in S such that x*y = 1. (Note that we have proved that y must exist but we have not identified it.)  ■

There is a third type of proof that shows that an object must exist but it is to be used only as a last resort as it is controversial.  This is a non-constructive existence proof.  Here is an example:

Theorem F:  There exists irrational numbers α and β such that αβ is rational.  

Proof of F: Let α =  β = 
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.   Consider αβ = γ.  Now γ is clearly a real number.  Whether it is rational or irrational, we do not know, but it must be one or the other.  

Case I:  γ is rational and we are done.

Case II: γ is irrational.  In this case, consider γ 
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.  But this clearly equals 2, a rational number.   

Thus, although we do not know which of the two cases we are in, we get an irrational base to an irrational power being rational.  ■

[Note on Theorem F:  Actually, we do know that 
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is irrational.  In fact, we even know from Gelfond’s Theorem that it is transcendental.  So all we really need is case II.  What this proof shows is that, even if we did not know about Gelfond’s Theorem, we could have proved Theorem F.]   

What of non-existence?  This is, in general, much harder to prove than existence.  To show that something does not exist, it is not sufficient to say that you have searched for this object and that you have not been able to find it.  In general, you must show that the specified object could not possibly exist.  This is an example of an indirect proof.  We consider this type of proof next.

3) Indirect proofs.
There are essentially two types of indirect proofs, those which use the contrapositive of an implication and those which try to derive a contradiction from a set of assumptions.  This second type is often called reductio ad absurdum (RAA for short).  These two methods are logically equivalent.

If the given theorem is an implication of the form H implies C (where H stands for the set of hypotheses and C stands for the conclusion), then this can be re-written in contrapositive form: ~C implies ~H.  Here “~” is the symbol for negation.   Thus, proving that the negation of the conclusion implies the negation of the hypotheses proves the original theorem.   Consider the example:

Theorem G:  The sum of a rational number and an irrational number is irrational.

Proof of G:  Let x be a rational number and let y be any real number.  (We select generic particular elements.)  Let x + y = z.  (If this were a direct proof, we would try to show that y irrational implies z irrational.  As this is a proof by contraposition, we assume the negation of the conclusion.  That is, we assume that z is rational and try to show that the negation of the hypothesis holds, namely that y is rational.)  Contrary to the theorem’s assertion, assume that z is rational.  We wish to show that y must also be rational.  

By definition, z = 
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 with both a and b integers and b non-zero.  Similarly, x = 
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 with c and d integers and d non-zero.  Now 

                        y = z – x  = 
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As b and d are non-zero, this is clearly a rational number.  Thus we have shown that the negation of the conclusion (The conclusion was that the sum was irrational.  We assumed that it was rational.) implies the negation of the hypothesis.  (The hypothesis was that one of the summands was rational and the other was irrational.  We proved that if one of the summands was rational, the other was, as well.)  ■

Let us prove Theorem G again, this time using reductio ad absurdum.  This time, we are going to assume the negation of the conclusion, just as we did above.  But now, we shall assume that the hypothesis is correct and try to derive a contradiction (and absurd statement) from these assumptions.  

Alternate Proof of G:  By reductio ad absurdum.  Let x be some rational number and let y be some irrational number.  (the hypotheses)   Let x + y = z.  We wish to show that z is irrational.  By RAA, we shall assume that z is rational (the negation of the conclusion).  

By definition, z = 
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 with both a and b integers and b non-zero.  Similarly, x = 
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 with c and d integers and d non-zero.  Now 

                        y = z – x  = 
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This shows that y is rational.  But we assumed that y was irrational.  Clearly, we can’t have both.  This is a contradiction.  Thus, the assumption that z is rational lead us to an absurdity.  It was also the only unsupported statement.  Thus this statement must be false.  Hence, z must be irrational.  ■

Indirect proofs are a usually harder and more convoluted than direct ones.  They are particularly helpful when the original theorem appears intractable and no direct proof is forthcoming.  Some seemingly very hard theorems yield nicely to the indirect method.  Essentially what you are doing with an indirect proof is asking yourself the question: “What would go wrong if the theorem were false?”  Although Theorem G is a simple illustration of both types of indirect proof, it hardly gives the feeling of cracking a very hard nut.  The following two examples, both proved indirectly, may be two of the most beautiful theorems ever proved.  They both seem, at first blush, entirely intractable. Yet they were both proved, spectacularly, and simply, by the ancient Greeks!  (The first theorem was proved by the Pythagoreans and the second by Euclid.)    

Theorem H: 
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is irrational.  

Proof of H:  By RAA, suppose that 
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is rational.  We seek to derive a contradiction from this assumption.   By definition of rational, 
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 = 
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 with both a and b integers and b non-zero.  Let us assume, moreover, that 
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 is in lowest terms.  That is, a and be have no common factors.   Squaring both sides yields:

2 = 
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.   Thus, 2
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.   By definition, this tells us that 
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 is an even integer.  (It is twice an integer.)  Thus a is an even integer.  We see this as follows.  The square of an odd integer is odd.  Thus, by contraposition, 
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 even implies that a is even.  Hence, a = 2k, for some integer k.  Substituting into the above, we get:

2
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.     This implies that
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.  Hence 
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is even.  By the reasoning above, b must also be even.  So we see that assuming that 
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was rational, we have arrived at a contradiction.  The two integers, a and b, were assumed to have no common factors but they are both even (i.e. divisible by 2).  ■

Now for another spectacular example of the strength and beauty of the method of indirect proof:

Theorem I:  There are infinitely many primes. 

Proof of I:  By RAA, assume that there are only finitely many primes.  Thus we can list them.  Let p1 , p2 , p3 , …, pn be the complete list of primes.  Consider the number,

                                       M =  (p1 x p2 x p3 x …x pn ) + 1

Thus, M is one more than the product of all of the primes.  Observe that p1 does not divide M since M divided by p1 leaves a remainder of 1.  Similarly, p2 does not divide M. Indeed, none of the primes on our complete list divides M.  But M is surely an integer.  Thus, it is either a prime itself or the product of primes not on our original list.  In either case, the original list of primes could not possibly be complete.  This is a contradiction and it proves the theorem. ■

4) Counter-examples.
While it is quite clear that a single example can never prove a general theorem, it is true that a single counter-example can disprove a purported “theorem.”   For example, suppose we wished to prove the following “theorem.”

Theorem J:  Every square is greater than zero.

Disproof of J:   Zero squared is zero.  This is not greater than zero. ■

4) Set inclusions and equivalences.
There is a standard procedure for trying to show that one set is contained in another.  Suppose that we wanted to prove that A 
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 B for given sets, A and B.  The method is to select a generic, particular element, x, of A and show that it must lie in B, solely by virtue of the fact that x 
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A.   The central idea here is to note that set membership is completely defined by some set of properties.  Thus, x 
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A precisely when x satisfies all of the set membership properties of A; and similarly for B.  Thus, showing that A 
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 B comes down to proving that the properties that define set membership for A imply the properties that define it for B.  

To show that two sets are equal, one simply shows that each is contained in the other.  That is, to show A = B, one proves that A 
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 B and then that B 
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 A.   Consider the following example:

Theorem K:  For any sets A, B and C,
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Proof of K:  We shall first show that 
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.  Let x be an arbitrary element of 
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.  We must show that x is necessarily an element of 
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.  That x is an element of  
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says that x is in A and in either B or C.  That is, either x is in A and B or x is in A and C.  But this is precisely what it means for x to be in 
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Thus we have shown that 
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To complete the proof, it suffices to show that  
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To this end, let x be an element of in 
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.  This says that x is either in A and B or x is in A and C.  Thus, in any event, x must be in A.  In addition, x must also be either in B or in C.  In other words, x is in 
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.  This completes the proof. ■

5) If and only if theorems.

Essentially, most theorems are implications.  They say if H (some set of hypotheses) is true then C (a conclusion) is true.  Some theorems of this type are actually two statements in one.  They state that H 
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C (H implies C) and that H 
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C (C implies H).  Put another way, they say that H is true if and only if C is true.  To prove a theorem of this type, one shows the two implications separately.  This is similar to what we did in the previous section where we proved set equality.  First we proved containment one way around and then we showed containment the other way around.  Consider the following example:

Theorem L:  An integer n is odd if and only if n2 is odd.

Proof of L:  (n odd  
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 n2 is odd):   Let n be an odd integer.  Thus n = 2k + 1 for some integer k.  Then n2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1.  Since (2k2 + 2k) is an integer, we know that n2 is odd.  (This completes half of the proof. Now we must show the implication in the opposite direction.)

( n2 is odd 
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 n odd):  (We shall use proof by contraposition.  We do this after trying a direct proof and discovering that it is unfruitful.)  Suppose that n is even (the negation of the conclusion).  Thus n = 2k for some integer k.  We wish to show that n2 is not odd (the negation of the hypothesis).  Now if n = 2k then n2 = 4k2.   Thus, n2 is even (i.e. not odd). ■

6) Induction.
Another extremely powerful type of proof is called induction.  Theorems which assert that a certain property is true for all positive integers greater than or equal to a given integer are best addressed by this method.  Typically the starting integer is 1 but this is not always so.  The basic idea is this.  Suppose that you are given some set of integers, S, and you are told that 1 is an element of S.  Suppose, moreover, that you are told that the presence of k in the set S implies the presence of k+1.   Now 1 being in S implies that 2 is in S.  The presence of 2 implies that 3 is there, and so on.  Thus, you could clearly conclude that all positive integers were in S.  This is the axiom of induction.  One applies it to proofs in the following way.  Suppose that P(n) was a statement about the positive integer, n.  Imagine that one were required to prove that P(n) was true for all integers greater than or equal to 1 (or some other starting number).   The first step, called the basis step, is to verify the truth of P(1).  If a different starting number, say b, were given, one would begin by verifying P(b).   The second step, called the inductive step, is to prove the implication that if P(k) is true, then P(k+1) is true.  Note that you are not proving either P(k) or P(k+1) true; you are proving that the truth of P(k) implies the truth of P(k+1).   One typically does this directly by assuming that P(k) is true and deducing the truth of P(k+1).  These two steps, once completed, allow one to conclude the truth of the original statement that P(n) is true for all n greater than or equal to 1 (or b).   Consider the following example:

Theorem M:   1 + 2 + 3 + 4 + … + n = 
[image: image50.wmf]n (n + 1) / 2, for all n greater than or equal to 1.

Proof of M:   (We observe that the statement of the theorem is of the form P(n) is true for all n 
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 1, where P(n) states: 1 + 2 + 3 + 4 + … + n = 
[image: image52.wmf]n (n + 1) / 2.)  Proof by induction.

Basis step: P(1): 1 = 1 (2) /2 = 1.  (The basis step is, thus, complete since we have verified the truth of P(1).)  

Inductive step:  Let us assume that P(k) is true for some positive integer, k.  We wish to show that P(k+1) is true as a consequence.  

Substituting k+1 for n in P(n) yields:

(1)  P(k+1) is the statement:   1 + 2 + 3 + 4+ ….. + k + (k+1)   = (k+1)(k+2)/2

Consider the left hand side of (1).  This is the sum:

 (2)                              1 + 2 + 3 + 4+ ….. + k + (k+1)   

By the assumption that P(k) is true, we can substitute k(k+1)/2 for the sum of the first k terms.   Thus, (2) is equivalent to:

(3)                             [k(k+1)/2] + (k+1)

Basic algebraic manipulation shows that this is equal to:

(4)                                    
[image: image53.wmf]22

2232

222

kkkkk

++++

+=


Thus, this is equal to the sum of the first k+1 positive integers.  But P(k+1) asserts that this is equal to (k+1)(k+2)/2.  Simple manipulation shows:

(5)                                     
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As these two values are equal, we have proved that the truth of P(k+1) follows from the assumption that P(k) is true.  ■
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