# **Principles of Corporate Finance**

**Professor James J. Barkocy** 





Net Present Value and Other Investment Criteria

"There are three kinds of people; the ones that can count and the ones that can't."

<u>Net Present Value</u> - Present value of cash flows minus initial investments.

<u>Opportunity Cost of Capital</u> - Expected rate of return given up by investing in a project

#### **Example**

Suppose we can invest \$350,000 today and receive \$400,000 in one year. What is our increase in value given a 7% expected return? 400,000 Profit = -350,000 += \$23,832 1.07 \$23,832 Added Value This is NPV \$350,000 Initial Investment

#### NPV = PV - required investment

$$NPV = C_0 + \frac{C^t}{\left(1+r\right)^t}$$

$$NPV = C_0 + \frac{C_1}{(1+r)^1} + \frac{C_2}{(1+r)^2} + \dots + \frac{C_t}{(1+r)^t}$$

#### <u>Example</u>

You have the opportunity to purchase an office building. You have a tenant lined up that will generate \$25,000 per year in cash flows for three years. At the end of three years you anticipate selling the building for \$450,000. How much would you be willing to pay for the building?





*Example* - *continued* 

If the building is being offered for sale at a price of \$375,000, would you buy the building and what is the added value generated by your purchase and management of the building?

*Example* - continued

If the building is being offered for sale at a price of \$375,000, would you buy the building and what is the added value generated by your purchase and management of the building?

$$NPV = -375,000 + \frac{25,000}{(1.07)^1} + \frac{25,000}{(1.07)^2} + \frac{475,000}{(1.07)^3}$$
$$NPV = \$57,942$$

#### Net Present Value Rule

Managers increase shareholders' wealth by accepting all projects that are worth more than they cost.

Therefore, they should accept all projects with a positive net present value.

For mutually exclusive projects, pick the project with the highest positive NPV.

Calculating the NPV can be a laborious task. Fortunately, financial calculators can perform this function easily.

| <u>HP-10B</u> |           | HP-12C   |       | BAII Plus                           |
|---------------|-----------|----------|-------|-------------------------------------|
| -375,000      | CFj       | -375,000 | g CF0 | CF                                  |
| 25,000        | CFj       | 25,000   | g CFj | 2nd {CLR Work}                      |
| 25,000        | CFj       | 25,000   | g CFj | -375,000 ENTER                      |
| 475,000       | CFj       | 475,000  | g CFj | 25,000 ENTER                        |
| 7             | i         | 7        | i     | 25,000 ENTER $\downarrow\downarrow$ |
| N             | SA        | f NPV    |       | 475,000 ENTER                       |
| A             | ll produc | ce       |       | CPT NPV 7 ENTER $\downarrow$        |
| NP            | V=57,94   | 1.95     | I     | CPT                                 |

# **Other Investment Criteria**

 $\frac{\text{Internal Rate of}}{\text{Return (IRR)}}$ -Discount rate at which NPV = 0. Rate of Return Rule -Invest in any project offering a rate of return that is higher than the opportunity cost of capital.

Example

You can purchase a building for \$375,000. The investment will generate \$25,000 in cash flows (i.e. rent) during the first three years. At the end of three years you will sell the building for \$450,000. What is the IRR on this investment?

$$0 = -375,000 + \frac{25,000}{(1 + IRR)^{1}} + \frac{25,000}{(1 + IRR)^{2}} + \frac{475,000}{(1 + IRR)^{3}}$$



Calculating the IRR can be a laborious task. Fortunately, financial calculators can perform this function easily.

| <u>HP-10B</u> |          | HP-12C   |       | BAII Plus                            |
|---------------|----------|----------|-------|--------------------------------------|
| -375,000      | CFj      | -375,000 | g CF0 | CF                                   |
| 25,000        | CFj      | 25,000   | g CFj | 2nd {CLR Work}                       |
| 25,000        | CFj      | 25,000   | g CFj | -375,000 ENTER                       |
| 475,000       | CFj      | 475,000  | g CFj | 25,000 ENTER $\downarrow \downarrow$ |
| {IRR          | X/YR}    |          | f IRR | 25,000 ENTER $\downarrow\downarrow$  |
|               | ľ        |          |       | 475,000 ENTER↓                       |
| All prod      | luce IRF | IRR CPT  |       |                                      |



#### <u>Example</u>

You have two proposals to choice between. The initial proposal has a cash flow that is different than the revised proposal. Using IRR, which do you prefer?

| Project                 | C <sub>0</sub> | <b>C</b> <sub>1</sub> | C <sub>2</sub> | C <sub>3</sub> | IRR    | N  | PV@7%  |
|-------------------------|----------------|-----------------------|----------------|----------------|--------|----|--------|
| Initial Proposal        | -350           | 400                   |                |                | 14.29% | \$ | 23,832 |
| <b>Revised Proposal</b> | -375           | 25                    | 25             | 475            | 12.56% | \$ | 57,942 |

#### Internal Rate of Return IRR = 3% and 25%



# **Payback Method**

<u>**Payback Period</u></u> - Time until cash flows recover the initial investment of the project.</u>** 



The *payback rule* specifies that a project be accepted if its payback period is less than the specified cutoff period. The following example will demonstrate the absurdity of this statement.

# **Payback Method**

The three project below are available. The company accepts all projects with a 2 year or less payback period. Show how this will impact our investment decision.



# **Capital Rationing**

<u>Capital Rationing</u> - Limit set on the amount of funds available for investment.

- <u>Soft Rationing</u> Limits on available funds imposed by management.
- Hard Rationing Limits on available funds imposed by the unavailability of funds in the capital market.

# **Profitability Index**

|         |    |            |     | Profitability |
|---------|----|------------|-----|---------------|
| Project | PV | Investment | NPV | Index         |
| L       | 4  | 3          | 1   | 1/3 = .33     |
| М       | 6  | 5          | 1   | 1/5 = .20     |
| Ν       | 10 | 7          | 3   | 3/7 = .43     |
| 0       | 8  | 6          | 2   | 2/6 = .33     |
| Р       | 5  | 4          | 1   | 1/4 = .25     |

# **Investment Timing**

#### Example:

You may purchase a computer anytime within the next five years. While the computer will save your company money, the cost of computers continues to decline. If your cost of capital is 10% and given the data listed below, when should you purchase the computer?

| Year | Cost | PV Savings | NPV at Purc | chase        | NPV Today |
|------|------|------------|-------------|--------------|-----------|
| 0    | 50   | 70         | 20          |              | 20.0      |
| 1    | 45   | 70         | 25          |              | 22.7      |
| 2    | 40   | 70         | 30          |              | 24.8      |
| 3    | 36   | 70         | 34          | Date to purc | hase 25.5 |
| 4    | 33   | 70         | 37          |              | 25.3      |
| 5    | 31   | 70         | 39          |              | 24.2      |
|      |      |            |             |              |           |

# **Equivalent Annual Annuity (Cost)**

**Equivalent Annual Annuity (Cost)** - The payment per period with the same present value as the cash flows.

- Calculate the NPV of both projects.
- Use NPV as your present value and find the appropriate annuity payment.

# **Equivalent Annual Annuity (Cost)**

Given the following costs of operating two machines and a 6% cost of capital, select the lower cost machine using equivalent annual cost method.



### **Replacement Chain Method**

| 0   | 1  | 2  | 3   | 4  | 5  | 6  |
|-----|----|----|-----|----|----|----|
| -15 | -4 | -4 | -4  |    |    |    |
|     |    |    | -15 | -4 | -4 | -4 |
|     |    |    |     |    |    |    |
|     |    |    |     |    |    |    |
| -15 | -4 | -4 | -19 | -4 | -4 | -4 |

#### NPV @6%=\$-47.26

#### Select Project A

| 0   | 1  | 2   | 3  | 4   | 5  | 6  |
|-----|----|-----|----|-----|----|----|
| -10 | -6 | -6  |    |     |    |    |
|     |    | -10 | -6 | -6  |    |    |
|     |    |     |    | -10 | -6 | -6 |
|     |    |     |    |     |    |    |
| -10 | -6 | -16 | -6 | -16 | -6 | -6 |

NPV @6%=\$-56.30