Principles of Corporate Finance

Professor James J. Barkocy

Time Value of Money

"Time <u>is</u> money... really "

Copyright © 2015 by The McGraw-Hill Companies, Inc. All rights reserved.

Time Value of Money

Money has a time value. It can be expressed in multiple ways:

A dollar today held in savings will grow.

A dollar received in a year is not worth as much as a dollar received in a year is not worth as much as a dollar received today.

To make meaningful comparisons we must adjust for time.

Future Values

Future Value - Amount to which an investment will grow after earning interest.

<u>Compound Interest</u> - Interest earned on interest.

<u>Simple Interest</u> - Interest earned only on the original investment.

Future Values

Compound Interest

Interest earned at a rate of 6% for five years on the previous year's balance.

	<u>Today</u>	<i>Future Years</i>					•
		<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	
Interest Earned		6.00	6.36	6.74	7.15	7.57	
Value	100	106.00	112.36	119.10	126.25	133.82	

Value at the end of Year **5** = \$133.82

Future Values

Future Value of 100 = FV

$$FV = PV \times (1+r)^t$$

Example - FV

What is the future value of \$100 if interest is compounded annually at a rate of 6% for five years?

$$FV = \$100 \times (1 + .06)^5 = \$133.82$$

Simple Interest

Simple Interest

Interest earned at a rate of 6% for five years on a principal balance of \$100.

	Toda	У	Fı	•			
		<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	
Interest E	Carned	6	6	6	6	6	
Value	100	106	112	118	124	<i>130</i>	

Value at the end of Year 5 = \$130

Future Values with Compounding

Manhattan Island Sale

Peter Minuit bought Manhattan Island for \$24 in 1626. Was this a good deal?

To answer, determine \$24 is worth in the year 2020, compounded at 8%.

$FV = $24 \text{ x} (1+.08)^{394}$ = \$354.1 trillion

FYI - The value of Manhattan Island land is well below this figure.

$$FV = PV \times (1+r)^t$$

<u>Example</u>

If you can earn 8% on your money, how much money should you set aside today in order to buy a computer that will cost \$3000 in two years?

Present Value

Value today of a future cash flow.

Discount Rate

Interest rate used to compute present values of future cash flows.

Discount Factor

Present value of a \$1 future payment.

$$DF = \frac{1}{(1+r)^t}$$

FV of Multiple Cash Flows

PV of Multiple Cash Flows

• PVs can be added together to evaluate multiple cash flows.

$$PV = \frac{C_1}{(1+r)^1} + \frac{C_2}{(1+r)^2} + \dots$$

PV of Multiple Cash Flows

Simplifications

Perpetuity

• A constant stream of cash flows that lasts forever.

Annuity

• A stream of constant cash flows that lasts for a fixed number of periods.

Perpetuity

A constant stream of cash flows that lasts forever. C C C

$$PV = \frac{C}{(1+r)} + \frac{C}{(1+r)^2} + \frac{C}{(1+r)^3} + \cdots$$

The formula for the present value of a perpetuity is:

$$PV = \frac{C}{r}$$

C = cash paymentr = interest rate

Perpetuity

In order to create an endowment, which pays \$100,000 per year, forever, how much money must be set aside today if the rate of interest is 10%?

 $PV = \frac{100,000}{.10} = \$1,000,000$

Example - continued

If the first perpetuity payment will not be received until three years from today, how much money needs to be set aside today?

$$PV = \frac{100,000}{.10} \times \frac{1}{(1+.10)^3}$$
$$= \$751,315$$

Annuities

Ordinary Annuity

Annuity Due

Valuing an Annuity

			Cash	Flow			
Year	1	2	3	4	5	6	Present Value
Perpetuity A	\$1	\$1	\$1	\$1	\$1	\$1	$\frac{1}{r}$
Perpetuity B				\$1	\$1	\$1	$\frac{1}{r(1+r)^3}$
Three Year	\$1	\$1	\$1				$\frac{1}{r} - \frac{1}{r(1+r)^3}$
annuity							

PV of Annuity Formula

- C = cash payment
- r = interest rate
- t = Number of years cash payment is received

PV Annuity Factor (PVAF) - The present value of \$1 a year for each of t years.

<u>Annuity</u>

FV= 0 N=3 I=10 PMT=8000

You are purchasing a car. You are scheduled to make 3 annual installments of \$8,000 per year. Given a rate of interest of 10%, what is the price you are paying for the car (i.e. what is the PV)?

PV = \$19,894.82

Mortgage Amortization Table

Month	Outstanding		Interest	Principal	
	Balance	Payment	Paid	Paid	
1	\$200,000.00	\$1609.25	\$1500.00	\$109.25	
2	199,890.75	1609.25	1499.18	110.07	
3	199,780.68	1609.25	1498.36	110.89	
4	199,669.79	1609.25	1497.52	111.73	
Etc.					

Effective Interest Rates

Annual Percentage Rate - Interest rate that is annualized using simple interest.

Effective Annual Interest Rate - Interest rate that is annualized using compound interest.

Effective Interest Rates

Example:

Given a monthly rate of 1%, what is the Effective Annual Rate(EAR)? What is the Annual Percent-age Rate (APR)?

EAR = $(1+.01)^{12} - 1 = r$ EAR = $(1+.01)^{12} - 1 = .1268$ or 12.68% APR = .01 x 12 = .12 or 12.00%

Compounding Frequency

Compounding	Periods		Per Period		Effective
Period	<u>Per Year</u>	APR	Interest Rate	Growth Factor	Annual Rate
1 year	1	6%	6%	1.06	6.0000%
Semiannually	2	6%	3	$1.03^2 = 1.0609$	6.0900
Quarterly	4	6%	1.5	$1.015^4 = 1.061364$	6.1364
Monthly	12	6%	0.5	$1.005^{12} = 1.061678$	6.1678
Weekly	52	6%	0.11538	$1.0011538^{52} = 1.061800$	6.1800
Daily	365	6%	0.01644	$1.0001644^{365} = 1.061831$	6.1831
Continuously		6%	e ^{APR}	$2.718^{.06} = 1.061837$	6.1837

•FYI: The general formula for the future value of an investment compounded continuously over many periods can be written as:

 $FV = PV \times e^{rt}$

Inflation

Inflation - Rate at which prices as a whole are increasing.

Nominal Interest Rate - Rate at which money invested grows.

<u>Real Interest Rate</u> - Rate at which the purchasing power of an investment increases.